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Abstract. The torsion of polygons and self-avoiding walks in the cubic lattice is a measure of
the self-entanglement of these objects. We consider several definitions of torsion in polygons,
and introduce a fugacity conjugate to the torsion in our models. We study the thermodynamic
behaviour of these models using probabilistic methods and rigorous methods from statistical
mechanics. In particular, we prove that at least one of our models has a non-analyticity in its
free energy, corresponding to a transition between phases with high and low torsion.

1. Introduction

There has been recent interest in the use of geometrical measures of entanglement complexity
to describe the conformational properties of linear and ring polymers [1–3]. Most interest
has focused on the writhe of the polymer as a measure of the extent of supercoiling. For
ribbon models of double-stranded polymers (such as DNA [4] and some polysaccharides
[5]) one can also consider the twist of one boundary curve about the other, and there is an
important conservation theorem relating the twist and the writhe to the linking number of the
two boundary curves [6]. A lattice ribbon model has been developed [7], and this has been
used to investigate universal properties of ribbons, both numerically [8] and analytically
[9]. An interesting extension of this model would be to include a twist fugacity term, which
would allow one to concentrate on structures with a large twist, as is the case for DNA.

In this paper we build the necessary theoretical tools by considering the simpler case
of a single-stranded polymer. For single-stranded polymers a twist does not exist, but we
can define the torsion of the polymer backbone which captures some of the same local
information. Biopolymers such as proteins and DNA can exist in helical forms and torsion
reflects the extent of helicity of the polymer chain.

We shall be concerned with a lattice model of a ring polymer and specifically with
self-avoiding polygons in the simple cubic latticeZ3. Lattice models have the advantage
that we can use combinatorial methods to attack the problem, so that we shall be able to
prove several results about the asymptotic behaviour of various averages of the torsion of a
polygon. However, the usual way to define the torsion of a curve inR3 relies on the curve
being differentiable and having a tangent vector which is stationary nowhere [10]. Since
lattice polygons are piecewise linear we take a different approach to the definition of torsion
[11]. The approach which we use counts the number of signed dihedral angles (which are
either±π/2) since we want to measure the deviation from planarity. Alternatively we can
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simply count the number of these dihedral angles, and we shall argue that these two schemes
capture information about different structures in the polymer.

In section 2 we define three measures of the torsion of a polygon, corresponding to
three different ways of weighting the local torsional contributions, i.e. the dihedral angles.
In section 3 we prove some rigorous results about these three measures of torsion, and
show that a thermodynamic potential of at least one of them exhibits a singularity as the
fugacity associated with torsion is varied. In section 4 we prove some rigorous results about
densities of dihedral angles and investigate the connection of these results to the form of
the thermodynamic potentials.

2. Definitions

We begin by defining some notation. Letpn be the number ofn-edge (unrooted, unoriented)
self-avoiding polygons in the simple cubic latticeZ3. Polygons are considered to be distinct
if they cannot be superimposed by translation. For instance,p4 = 3 andp6 = 22. A polygon
is made up of a sequence of line segments, each of which comprises one or more colinear
edges, and each three successive line segments define a dihedral angle. The dihedral angle
can be 0 orπ , in which case the three line segments are coplanar, or±π/2 (the sign
is fixed using a right-hand rule). In the cubic lattice we shall be interested in defining
torsion as a measure of non-planarity. Consequently, we focus on dihedral angles of size
±π/2. We abuse the terminology above by ignoring dihedral angles of size 0 orπ , and
we takedihedral angleto mean a non-planar dihedral angle (of sizesπ/2 or −π/2 in the
cubic lattice). That is, apositive dihedral angleis a dihedral angle ofπ/2, and anegative
dihedral angleis a dihedral angle of−π/2. In eachn-edge polygon there can be a number
m of dihedral angles, with 06 m 6 n. Numbering these dihedral anglesi = 1, 2, . . . , m,
and writingτi = ±1 according to the sign of theith angle, we define

t =
∑
i

τi (2.1)

and

t̃ =
∑
i

|τi |. (2.2)

We call t the torsion of the polygon and̃t the absolute torsionof the polygon [11]. When
we consider the signed sum, the polygon must be oriented and we therefore writepn(t) for
the number oforientedn-edge polygons with torsiont . Therefore

n∑
t=−n

pn(t) = 2pn. (2.3)

Similarly we write p̃n(t̃) for the number of non-orientedn-edge polygons with absolute
torsion equal tõt . Clearly

n∑
t̃=0

p̃n(t̃) = pn. (2.4)

We can associate a weight with either the torsion or the absolute torsion of a polygon,
and we define the corresponding generating functions

Zn(β) =
n∑

t=−n
pn(t)e

βt (2.5)
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and

Z̃n(β) =
n∑
t̃=0

p̃n(t̃)e
βt̃ . (2.6)

Note thatZn(β) is symmetric inβ sincepn(t) = pn(−t), whereasZ̃n(β) is an increasing
function of β. We can define a third generating function, related to (2.5), by first defining
p̄n(t) = 2pn(t) if t > 0 andp̄n(0) = pn(0). Then

Z̄n(β) =
n∑
t=0

p̄n(t)e
βt =

n∑
t=−n

pn(t)e
β|t |. (2.7)

The utility of this definition will become apparent in the next section.

3. Thermodynamic limits

3.1. Existence of thermodynamic limits

We can define quantities related to the three generating functions (2.5)–(2.7) which play the
role of free energies per vertex, i.e.

Fn(β) = n−1 logZn(β) (3.1)

F̃n(β) = n−1 log Z̃n(β) (3.2)

F̄n(β) = n−1 log Z̄n(β). (3.3)

Hereafter we shall refer to these quantities asfree energies.
In this section we show that each of these functions has a limit asn goes to infinity.

The approach is to concatenate pairs of polygons, and establish that the generating functions
satisfy generalized supermultiplicative inequalities.

The top and bottom edges of an oriented polygon are defined by a lexicographic ordering
of the edges by the coordinates of their midpoints. The top edge is the one with the
lexicographically largest midpoint, and the bottom edge is the one with the lexicographically
smallest midpoint. LetP be an oriented polygon inZ3 with n edges and torsiont − s, and
let Q be an oriented polygon inZ3 with m edges and torsions. We call ep the top edge
of P andeq the bottom edge ofQ. In order to concatenateP andQ, we need to haveep
and eq parallel and with opposite orientations. This implies that, once we have chosenP
in pn(t − s) ways, we can chooseQ in pm(s)/4 ways. Now we can translateQ so that the
midpoints ofep andeq differ by unity in their first coordinates (with all other coordinates
identical, andeq with the larger first coordinate). We concatenateP andQ by deletingep
andeq and by adding two new edges to join the endpoints ofep andeq . This gives a new
oriented polygonP ⊕Q. Observe that removal of an edge in any polygon can decrease or
increase the torsion by at most three units, and similarly addition of an edge to make a new
polygon can change the torsion by up to three units. Thus, the torsion ofP ⊕Q can range
from up to six less to up to six more than the sum of the torsions ofP andQ. ThenP⊕Q
hasn+m edges and torsion of at leastt − 6 and at mostt + 6. Without loss of generality,
we will assume from now on thatn > m. Thus∑

s

pn(t − s)pm(s) 6 4
6∑

k=−6

pn+m(t + k) (3.4)

and the summation overs is over all those values ofs which gives a non-zero contribution
to the sum.
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Similarly, for the absolute torsion we can show that∑
s

p̃n(t − s)p̃m(s) 6 2
6∑

k=−6

p̃n+m(t + k). (3.5)

We now show that (3.5) can be used to prove thatZ̃n(β) satisfies a generalized
supermultiplicative inequality. A similar argument will show that (3.4) implies thatZn(β)

also satisfies a supermultiplicative inequality, but we will not repeat the proof here. Multiply
(3.5) by eβt and sum overt (remembering that we haven > m, and thatp̃m(`) = 0 if ` > m)

n∑
t=0

t∑
s=0

p̃n(t − s)p̃m(s)eβ(t−s)eβs 6 2
6∑

k=−6

n+m∑
t=0

p̃n+m(t + k)eβ(t+k)e−βk (3.6)

which gives

Z̃n(β)Z̃m(β) 6 2{e6βZ̃n+m(β)+ e5βZ̃n+m(β)+ · · · + eβZ̃n+m(β)+ Z̃n+m(β)
+e−β(Z̃n+m(β)− p̃n+m(0))+ e−2β(Z̃n+m(β)− p̃n+m(0)− p̃n+m(1))+ · · ·}

(3.7)

thus

Z̃n(β)Z̃m(β) 6 2

[( 6∑
j=−6

ejβ
)
Z̃n+m(β)−

( 6∑
j=1

e−jβ
)
p̃n+m(0)−

( 6∑
j=2

e−jβ
)
p̃n+m(1)

−
( 6∑
j=3

e−jβ
)
p̃n+m(2)−

( 6∑
j=4

e−jβ
)
p̃n+m(3)

−
( 6∑
j=5

e−jβ
)
p̃n+m(4)− e−6βp̃n+m(5)

]

6 2

( 6∑
j=−6

ejβ
)
Z̃n+m(β) (3.8)

so that logZ̃n(β) is a generalized supermultiplicative sequence.
Note that

Z̃n(β) 6 eκ3n if β 6 0 (3.9)

whereκ3 is the connective constant of polygons† in Z3, and

Z̃n(β) 6 e(κ3+β)n if β > 0. (3.10)

Thus, limn→∞ n−1 log Z̃n(β) = limn→∞ F̃n(β) = F̃(β) exists and is finite forβ <∞ [14].
Similarly, we can prove that limn→∞ n−1 logZn(β) = limn→∞ Fn(β) = F(β) exists and is
finite for β <∞.

It remains to prove thatF̄n(β) converges to a limit. We first consider the case
β 6 0. Taking again (3.4), multiplying both sides by eβ|t |, using the triangle inequality
|t | 6 |t − s| + |s|, and summing overt gives

n∑
t=−n

m∑
s=−m

pn(t − s)pm(s)eβ|t−s|eβ|s| 6 4
6∑

k=−6

n+m∑
t=−(n+m)

pn+m(t + k)eβ|t | (3.11)

† The connective constant of polygons is defined by the limit limn→∞ 1
n

logpn = κd in d-dimensions [12, 13].
The connective constant of self-avoiding walks is defined by replacingpn by cn (the number of self-avoiding
walks of n steps) and it is equal toκd .
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which implies, using the inequality||t + k| − |k|| 6 |t |, that

Z̄n(β)Z̄m(β) 6 4
6∑

k=−6

e−β|k|Z̄n+m(β). (3.12)

Hence, limn→∞ n−1 log Z̄n(β) = limn→∞ F̄n(β) = F̄(β) exists and is finite forβ 6 0.
For β > 0 we observe that

n∑
t=−n

pn(t)e
βt 6

n∑
t=−n

pn(t)e
β|t | 6 2

n∑
t=0

pn(t)e
βt 6 2

n∑
t=−n

pn(t)e
βt (3.13)

so taking logarithms, dividing byn and lettingn→∞ we have

lim
n→∞ n

−1 logZn(β) = lim
n→∞ n

−1 log Z̄n(β) (3.14)

or F(β) = F̄(β) for β > 0.

3.2. Convexity and monotonicity

We prove convexity of the functionFn(β) = n−1 logZn(β) by using the Cauchy–Schwartz
inequality, i.e.

Zn(β1)Zn(β2) =
n∑

t=−n
pn(t)e

β1t
n∑

s=−n
pn(s)e

β2s

>
( n∑
t=−n

pn(t)e
β1+β2

2 t

)2

=
(
Zn

(
β1+ β2

2

))2

(3.15)

which implies that

1

n
logZn

(
β1+ β2

2

)
6 1

2

(
1

n
logZn(β1)+ 1

n
logZn(β2)

)
(3.16)

i.e. thatFn(β) is a convex function ofβ. SinceF(β) is the limit of a sequence of convex
functions, it is convex inβ ∈ (−∞,∞). It is therefore continuous inβ ∈ (−∞,+∞), and
differentiable almost everywhere [15].

Using the Cauchy–Schwartz inequality for̄Fn(β) and F̃n(β) we obtain convexity,
continuity and differentiability (almost everywhere) also forF̄(β) and F̃(β). Moreover,
both of these limiting free energies are monotonic non-decreasing functions ofβ ∀β ∈ R,
since∀β1, β2 ∈ R, with β1 6 β2, we have eβ1|t | 6 eβ2|t | ∀t ∈ R and eβ1t̃ 6 eβ2t̃ ∀t̃ ∈ R+.
Also F(β) is a monotonic non-decreasing function ofβ, for β > 0, since it is equal to
F̄(β). SinceZn(β) = Zn(−β) we also observe thatF(β) = F(−β), and consequently,
F(β) is decreasing withβ if β < 0.

3.3. Bounds on the free energies

In this section we use bounds on the generating functions in order to obtain bounds on free
energies in our models. Ifβ = 0, thenZn(0) = 2pn, and by the definition of the free
energy we obtain

F(0) = κ3. (3.17)
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Figure 1. A polygon of lengthn and torsionn− 6. Figure 2. One can construct a polygon in which every
edge is the middle edge of a dihedral angle by adding
edges up, or down, at every second vertex of a planar
polygon.

If β > 0, then

Zn(β) =
n∑

t=−n
pn(t)e

βt 6 eβn
n∑

t=−n
pn(t) = 2eβnpn (3.18)

which implies:

F(β) 6 κ3+ β. (3.19)

Figure 1 is an example of a polygon withn edges and torsionn − 6. A similar
construction can be carried out for any evenn greater than or equal to 12. Hence
pn(n− 6) > 0, and we find thatZn(β) > eβ(n−6)pn(n− 6). Since every edge in a polygon
counted bypn(n−6), except for at most six, is the middle edge of a right-handed (positive)
dihedral angle, it fixes the orientation of edges adjacent to it. Thus, at least(n−2) edges in
the polygon have their orientations fixed if the polygon has torsionn− 6 (in the sense that
when we have specified the orientations of two edges, then the rest are also determined).
Thus,pn(n − 6) = eo(n), and we conclude thatF(β) > β if β > 0. On the other hand,
F(β) is monotonic increasing, and soF(β) > F(0) = κ3 if β > 0. Thus

F(β) > max{β, κ3}. (3.20)

SinceF(β) = F(−β), these results also give a lower and upper bound ifβ < 0.
We turn our attention now tõZn(β). If β = 0 thenZ̃n(0) = pn, and thusF̃(0) = κ3.

If β > 0 then an upper bound oñZn(β) is found by

Z̃n(β) =
∑
t>0

p̃n(t)e
βt 6 eβn

∑
t>0

p̃n(t) = pneβn. (3.21)

Hence

F̃(β) 6 κ3+ β. (3.22)

On the other hand,̃Zn(β) > eβnp̃n(n). A polygon which is counted bỹp3n(3n) can be
constructed from a planar polygon with 2n (n even) edges and all adjacent edges at right
angles as follows. We create dihedral angles by inserting a new edge in the polygon,
perpendicular to the plane containing it, at every second vertex. This new edge is chosen
to be either up or down, as illustrated in figure 2. In this way, exactlyn edges are added
to the polygon, resulting in a new polygon of length exactly 3n. This new polygon must
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be closed, thus exactlyn/2 of the new edges must be in the up direction, and exactlyn/2
in the down direction. Thus, we can construct it in at least

(
n

n/2

)
ways. Hence

Z̃3n(β) > e3βnp̃3n(3n) > e3βn

(
n

n/2

)
p∗2n (3.23)

wherep∗n is the number of polygons inZ2 with all adjacent edges at right angles. One can
show that limn→∞ 1

n
logp∗n > 1

2 log 2. Using this bound, taking logarithms, dividing by 3n

and lettingn → ∞ in the above (note that̃F(β) is a monotonic non-decreasing function
of β) gives

F̃(β) > max{ 23 log 2+ β, κ3}. (3.24)

If β < 0 thenZ̃n(β) 6 pn which gives

F̃(β) 6 κ3. (3.25)

For a lower bound, note that̃Zn(β) > p̃n(0) wherep̃n(0) is the number of planar polygons
in three dimensions. This gives the lower bound

F̃(β) > κ2 (3.26)

whereκ2 is the connective constant inZ2. (p̃n(0) equals three times the number of polygons
in two dimensions.)

The relation between the free energiesF(β) andF̃(β) is given by the following theorem.
We note thatF(0) = F̃(0) = κ3, so that these agree at least at one point. We prove that if
β > 0, thenF̃(β) is an upper bound onF(β). If β < 0, thenF̃(β) 6 κ3 6 F(β). From
equation (3.20), and sinceF(β) = F(−β), F̃(β) < F(β) if β < −κ3.

Theorem 3.1.If β 6 0, then F̃(β) 6 F(β), and the inequality is strict ifβ < −κ3. If
β > 0, thenF̃(β) > F(β).
Proof. We have already considered the caseβ 6 0. So assume thatβ > 0. Let l = (t̃−t)/2
and letq̃n(t̃ , l) be the number of polygons withn edges, having absolute torsiont̃ and torsion
equal tot̃ − 2l. Then

Z̃n(β) =
n∑
t̃=0

t̃∑
l=0

q̃n(t̃ , l)e
β(t̃−l)eβl

>
n∑
t̃=0

t̃∑
l=0

q̃n(t̃ , l)e
β(t̃−l)e−βl

=
n∑
t̃=0

t̃∑
l=0

q̃n(t̃ , l)e
β(t̃−2l). (3.27)

Now write qn(t̃, t) for the number of polygons withn edges, having absolute torsiont̃ and
torsion t . Sincet = t̃ − 2l the last inequality can be written as

Z̃n(β) >
n∑
t̃=0

t̃∑
t=−t̃

qn(t̃ , t)e
βt

=
n∑
t̃=0

n∑
t=−n

qn(t̃ , t)e
βt

=
n∑

t=−n
pn(t)e

βt = Zn(β) (3.28)

and the result follows after taking logarithms, dividing byn and lettingn go to infinity.�
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As noticed in equation (3.14), ifβ > 0, then F̄(β) = F(β). The situation is more
difficult to analyse ifβ < 0; we show in the following theorem that̄F(β) = κ3 for all
β < 0. The proof is based on a ‘most popular’ class argument (see for instance [16]).

Theorem 3.2.The limiting free energy corresponding to the excess torsion is independent
of β for β 6 0, and is equal toκ3.

Proof. We first note thatZ̄n(−∞) = pn(0) and Z̄n(0) = 2pn. Clearly Z̄n(−∞) 6 Z̄n(0).
If we concatenate two polygons, each havingn edges, one having torsionk and the other
having torsion−k, we obtain the inequality∑

k

pn(k)pn(−k) 6
6∑

l=−6

p2n(l). (3.29)

If we classify polygons by torsion there must be a most popular class, say those polygons
having torsion equal to±k∗. That is,

pn(k
∗) > pn(k) ∀|k| 6 n (3.30)

and

pn(k
∗) > 2pn/(2n+ 1). (3.31)

Sincepn(k∗) = pn(−k∗) this gives(
2pn

2n+ 1

)2

6 pn(k∗)pn(−k∗) 6
∑
k

pn(k)pn(−k) 6
6∑

l=−6

p2n(l). (3.32)

Let l∗ be the value ofl such that−66 l 6 6 andp2n(l
∗) > p2n(l) for −66 l 6 6. Then(

2pn
2n+ 1

)2

6 13p2n(l
∗). (3.33)

If β 6 0, then

2p2n > Z̄2n(β) > p2n(l
∗)eβ|l

∗| >
(

2pn
2n+ 1

)2 eβ|l
∗|

13
. (3.34)

Taking logarithms, dividing by 2n and lettingn go to infinity gives

lim
n→∞ n

−1 log Z̄n(β) = κ3 ∀β 6 0. (3.35)

�

We noted thatF(β) is a convex function, and is differentiable almost everywhere in its
domain. Moreover, ifF(β) is differentiable atβ, then

d

dβ
F(β) = lim

n→∞
1

n

d

dβ
logZn(β) = lim

n→∞
〈t〉n
n

(3.36)

where〈t〉n =
∑n

t=−n tpn(t)e
βt/Zn(β) is the mean torsion.〈t〉n/n is the mean torsion per

edge. In the next theorem, we adapt the tossing of a biased coin to prove that the limiting
value of the mean torsion per edge is positive for anyβ > 0. In particular, this means that
F(β) is strictly increasing for allβ > 0.

Theorem 3.3.The mean torsion per edge and the mean excess torsion per edge are both
positive for every positiveβ in the infiniten limit.
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Proof. The mean value of the torsion is

〈t〉n =
∑n

t=−n tpn(t)e
βt∑n

t=−n pn(t)eβt
. (3.37)

SinceF(β) = F̄(β) ∀β > 0, we only have to consider the mean torsion. The theorem is
an immediate consequence of the following result.

For anyβ > 0 there exists anε > 0 such that

lim
n→∞
〈t〉n
n
>
(

2

(
eβ

eβ + e−β

)
− 1

)
ε. (3.38)

Proof. The proof of the last result is as follows. Suppose thati, j andk are the canonical
unit vectors. LetP be the following walk: [−i, k,−i,−i,−k, i, j, k,−i,−k,−i, k,−i].
The union of the dual 3-cubes ofP is a topological 3-ballC, andP contains two positive
and one negative dihedral angles. A reflection ofP (to obtain the walkP ∗) through its
centre of mass leaves its endpoints andC unchanged.P ∗ contains two negative and one
positive dihedral angles.P is also a Kesten pattern [17], and since the endpoints ofP

andP ∗ are the same vertices ofC, one can choose to insert eitherP or P ∗ into C in any
given polygon containingC. Let αn be a class of polygons with at leastbεnc occurrences
of C, each containing eitherP or P ∗, and fixed outside the union of exactlybεnc of the
C’s. By Kesten’s pattern theorem [18] the number of such classes of polygons is at least
(1− e−γ n)2−bεncpn, whereγ > 0 is a small number andpn is the number of polygons
with lengthn. The factor of 2−bεnc appears because each classαn represents 2bεnc polygons.
(This is a consequence of the binomial choice of eitherP or P ∗ in eachC.) Suppose that
the contribution to the torsion of a polygon in the classαn from the fixed part outside the
union of theC’s is t , and let there bet+ occurrences of the patternP and t− occurrences
of the patternP ∗ in theC’s (thus, t+ + t− = bεnc). In the partition function, the weight
of eachP is eβ , and ofP ∗ is e−β . Since theP andP ∗ are independent and binomially
distributed, the normalized contribution of the classαn to the partition function is

eβt
bεnc∑
t+=0

(bεnc
t+

)(
eβ

eβ + e−β

)t+ ( e−β

eβ + e−β

)bεnc−t+
= eβt . (3.39)

Similarly, the normalized contribution to the numerator in (3.37) is

eβt
bεnc∑
t+=0

(t + t+ − t−)
(bεnc
t+

)(
eβ

eβ + e−β

)t+ ( e−β

eβ + e−β

)bεnc−t+
= eβt

(
t + 2

(
eβ

eβ + e−β

)
− 1

)
bεnc. (3.40)

The contribution from the classα∗n, the mirror image ofαn, is similarly obtained (by
replacingt with −t):

e−βt
(
−t + 2

(
eβ

eβ + e−β

)
− 1

)
bεnc. (3.41)

Without loss of generality, we can assume thatt > 0. In that case, the combined contribution
to the numerator in (3.37) from the classαn and its mirror image is

t (eβt − e−βt )+
[

2

(
eβ

eβ + e−β

)
− 1

]
bεnc(eβt + e−βt ). (3.42)

For β > 0 the first term is always non-negative, and so we can get a lower bound on the
numerator by ignoring it. This gives a lower bound for each of the classesαn. Let ωn be
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the set of polygons with fewer thanbεnc occurrences ofP or P ∗ in C, and fixed outside
the union of theC’s. For anyε > 0 it can be shown, using standard techniques (see for
example [19]), thatqn grows exponentially withn. On the other hand, the pattern theorem
for polygons [20], states that there exists anε0 > 0, such that for every positiveε < ε0, the
number of polygons inωn is exponentially small, compared with all polygons. We conclude
that qn is bounded from above and below by e−γ1npn > qn > e−γ2npn if n is large, where
0 < γ1 < γ2, and for every positiveε < ε0. We now assume thatε < ε0 is fixed. LetR
be the minimum contribution to the numerator in (3.37) by a polygon inωn, andS be the
maximum contribution to the partition function by a polygon inωn. Using these bounds,
and the contributions from the classesαn, the mean torsion forn large enough is bounded
from below as

〈t〉n
n
>
(1− e−γ n)pn[(2( eβ

eβ+e−β )− 1) bεnc
n

](eβt + e−βt )+ e−γ2npnR

pn(eβt + e−βt )+ e−γ1npnS
(3.43)

since each classαn contains 2bεnc polygons. Now takingn→∞ we obtain

lim
n→∞
〈t〉n
n
>
(

2

(
eβ

eβ + e−β

)
− 1

)
ε. (3.44)

�
We have already seen that̄F(β) = κ3 if β 6 0. In particular, this means that the

mean absolute torsion per edge is zero ifβ < 0. The left derivative ofF̄(β) is also zero
at β = 0, and by theorem 3.3 the right derivative atβ is either 0 or positive. If it is
positive, then there is a jump discontinuity atβ = 0 in the first derivative ofF̄(β), which
indicates afirst-order transition in this model. In addition, sinceF(β) = F̄(β) if β > 0,
andF(β) = F(−β), this also indicates a first-order transition in the mean torsion. If the
right derivative atβ = 0 is 0, on the other hand, then we have a continuous transition in
the excess torsion model, while we cannot make any statements about the mean torsion.

The mean absolute torsion, on the other hand, is positive atβ = 0, in contrast to the
results above. We prove this in the next theorem.

Theorem 3.4.The mean absolute torsion per edge is positive atβ = 0 in the infiniten limit.

Proof. Let P be the following walk: [i, j, k]. ThenP contains exactly one dihedral angle.
By the pattern theorem for polygons there exists aγ > 0 and anε > 0 (dependent onP ),
such that a fraction(1− e−γ n) of all n-polygons containsP at leastbεnc times. The mean
absolute torsion,〈t̃n〉, of n-polygons per edge is bounded below by

〈t̃n〉
n
> (1− e−γ n)pnbεnc + e−γ npn.0

npn
= (1− e−γ n)

bεnc
n
. (3.45)

Thus limn→∞ 〈t̃n〉n > ε > 0. �

4. The density function of dihedral angles

The number of polygons of lengthn with a ‘density’ ε of dihedral angles is̃pn(bεnc). In
this section we study absolute torsion by focusing our attention on thedensity function
ρ̃(ε) = limn→∞ n−1 log p̃n(bεnc) of dihedral angles. We first prove that this density
function is well defined, in the sense that the limit exists. The density function is related
to the free energy by a Legendre transform:F̃(β) = sup06ε61(ρ̃(ε)+ εβ), and conversely

ρ̃(ε) = infβ(F̃(β) − εβ), see [21] for details. Consequently, knowledge of the density
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function is equivalent to knowledge of the free energy. However, there are some results
which are easier to prove using the density function. In this section we will consider the
asymptotic behaviour of̃F(β) by first finding some properties of the density function.

Theorem 4.1.The limit limn→∞ n−1 log p̃n(bεnc) = ρ̃(ε) exists and is a concave function
of ε in [0, 1].

Proof. p̃n(bεnc) is the number of polygons of lengthn with bεnc dihedral angles. Observe
that ε ∈ [0, 1]. It now follows from concatenation that

p̃n(bεnc)p̃m(bδmc) 6
6∑

i=−6

p̃n+m(bεnc + bδmc + i). (4.1)

Sinceba + bc − 16 bac + bbc 6 ba + bc + 1, the above can be simplified to

p̃n(bεnc)p̃m(bδmc) 6 3
8∑

i=−8

p̃n+m(bεn+ δmc + i)

6 51p̃n+m(bεn+ δm+ i(n,m)c) (4.2)

wherei(n,m) is that value ofi which maximizes the summand above and|i(n,m)| 6 8.
Put δ = ε in (4.2), and definẽqn(bεnc) = p̃n(bεnc)/51. Then

q̃n(bεn− i(n,m)c)q̃m(bεmc) 6 q̃n+m(bε(n+m)c). (4.3)

Suppose thatn is given, and for fixedm, n = Nm + r. Applying the above inequality to
q̃n(bεnc) recursively gives

q̃n(bεnc) > q̃mN+r (bε(mN + r)c) > q̃mN(bε(mN)c)q̃r (bεr − i(mN, r)c)

> · · · >
N∏
l=1

q̃m(bεm− i(ml,m(l − 1)))cq̃r (bεr − i(mN, r)c) (4.4)

where all thei(a, b) are between−8 and 8. For a fixed value ofm, there is a value
of l which minimizes q̃m(bεm − i(ml,m(l − 1))c). Let this value belm, and define
zm = i(mlm,m(lm − 1)). Then |zm| 6 8. Replacing thei(ml,m(l − 1)) above byzm
gives

q̃n(bεnc) > [q̃m(bεm− zmc)]N q̃r (bεr − i(mN, r)c). (4.5)

Take logarithms of this equation, divide byn = mN + r, and taken → ∞ by letting
N →∞. This gives

lim inf
n→∞

1

n
log q̃n(bεnc) > 1

m
log q̃m(bεm− zmc). (4.6)

Put ε = δ in (4.2), and definej (n,m) = i(n,m) + zn+m. Then |j (n,m)| 6 16 and by
arguing as in equation (4.3), we obtain

q̃n(bεn− j (n,m)c)q̃m(bεmc) 6 q̃n+m(bε(n+m)− zn+mc) (4.7)

and consequently

q̃m(bεm− zmc) > q̃k(bεk − j (k,m)c)q̃m−k(bε(m− k)c) (4.8)

wherek < m. Substitute the above into equation (4.6), then

lim inf
n→∞

1

n
log q̃n(bεnc) > 1

m
log q̃k(bεk − j (k,m)c)+ 1

m
log q̃m−k(bε(m− k)c). (4.9)
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Now take the lim sup of the above by lettingm → ∞, and for each value ofm choose
k such thatq̃k(bεk − j (k,m)c) > 0. Since|j (k,m)| 6 16, we need at most 33 different
values ofk, andk stays therefore finite asm→∞. Consequently

lim inf
n→∞

1

n
log q̃n(bεnc) > lim sup

m→∞
1

m
log q̃m(bε(m)c) (4.10)

and the limit exists, so that we can define

ρ̃(ε) = lim
n→∞

1

n
log p̃n(bεnc). (4.11)

To see thatρ̃(ε) is concave, putn = m in (4.2). This gives

q̃n(bεnc)q̃n(bδnc) 6 q̃2n(b(ε + δ)n+ i(n, n)c). (4.12)

Take logarithms, divide byn and letn→∞. �
We are interested in the behaviour ofρ̃(ε), especially for smallε. This will give

information on the asymptotic behaviour of the free energy asβ →−∞.

Theorem 4.2.ρ̃(ε) is continuous atε = 0 and the right derivative atε = 0 is infinite. In
addition, ρ̃(0) = κ2 and there exists a positive numberα0 such thatρ̃(1− α) < κ3 for all
α < α0.

Proof.
(1) We first prove continuity of̃ρ(ε) at ε = 0, and the existence ofα0. Note that

ρ̃(0) = κ2 since all polygons with no dihedral angles are planar. To prove continuity at
ε = 0, we must show that limε→0 ρ̃(ε) = κ2. Sinceκ3 > κ2, it follows that for smallε,
ρ̃(ε) > ˜ρ(0) = κ2. We now show that for anyδ > 0, limε→0 ρ̃(ε) 6 δ+κ2. This establishes
continuity atε = 0.

Let p̃n(t) be the number of polygons withn edges and absolute torsiont . Define cn
to be the number of self-avoiding walks of lengthn (in Z3) and let c(2)n be the number
of self-avoiding walks of lengthn in Z2. The connective constants forcn and c(2)n exist
[12] and they are defined by limn→∞ 1

n
ln cn = κ3, and limn→∞ 1

n
ln c(2)n = κ2 respectively.

¿From the existence of these limits, givenδ > 0 ∃m = m(δ) such thatcm 6 e(κ3+δ)m and
c(2)m 6 e(κ2+δ)m.

Choosem < n, and subdivide each polygon of lengthn into M subwalks of lengthm,
with a remaining subwalk of lengthr, where 06 r < m (thusM = (n − r)/m). If the
total absolute torsion ist , then at mostt of these subwalks are non-planar (that is, contain
at least one dihedral angle). Thus

p̃n(t) 6
t∑

k=0

(
M

k

)
ckm[c(2)m ]M−kcr

6
t∑

k=0

(
M

k

)
e(κ3+δ)kme(κ2+δ)(M−k)me(κ3+δ)r

=
t∑

k=0

(
M

k

)
e(κ3−κ2)kmeκ2MmeδMme(κ3+δ)r

6 eδMmeκ2Mme(κ3+δ)m
t∑

k=0

(
M

k

)
e(κ3−κ2)km. (4.13)

Let t = bεnc, take logarithms and divide byn

1

n
ln p̃n(bεnc) 6 δMm

n
+ κ2Mm

n
+ (κ3+ δ)m

n
+ 1

n
log
bεnc∑
k=0

(
M

k

)
e(κ3−κ2)km. (4.14)
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Examine the final term; for smallε < 1/3m the maximum term in the summand when
k = bεnc is:

1

n
log
bεnc∑
k=0

(
M

k

)
e(κ3−κ2)km 6 1

n
log

[
(bεnc + 1)

(
M

bεnc
)

e(κ3−κ2)bεncm
]

= 1

n
log(bεnc + 1)+ 1

n
log

(
M

bεnc
)
+ (κ3− κ2)bεncm/n.

The combinatorial term in the last inequality can be bounded as follows from above:

1

n
log

(
M

bεnc
)
= 1

n
log

( n−r
m

bεnc
)
6 1

n
log

(b n
m
c

bεnc
)
. (4.15)

Since 1
n

log
(b n

m
c

bεnc
) = 1

n
b n
m
c log(b n

m
c/(b n

m
c − bεnc)) + 1

n
bεnc log((b n

m
c − bεnc)/bεnc) →

− 1
m

log(1− εm)− ε logε + ε log( 1
m
− ε) asn→∞, it follows that

lim
n→∞

1

n
log p̃n(bεnc) 6 δ + κ2+ (κ3− κ2)εm

− 1

m
log(1− εm)− ε logε + ε log

(
1

m
− ε

)
. (4.16)

Now letting ε → 0 with δ (and hencem) fixed we obtain

lim
ε→0

lim
n→∞

1

n
log p̃n(bεnc) 6 δ + κ2. (4.17)

Sinceδ is arbitrarily small, this proves continuity.
Since ρ̃(ε) is continuous in [0, 1), the above implies that there exists anεm > 0 such

that εm = min{ε|ρ̃(ε) = κ3}. Finally, the existence ofα0 follows from Kesten’s pattern
theorem [20]: Ifα is small, then almost all edges are in dihedral angles, and the density of
the pattern{i, i} is low, and soρ̃(1−α) < κ3. Chooseα0 to be the maximum which makes
this true.

(2) We next prove that the right derivative ofρ̃(ε) is infinite atε = 0. Letp(2)n (λn,Q) be
the number ofn-edge polygons inZ2 which contain a given pattern (a subwalk)Q at least
λn times. By Kesten’s pattern theorem there exists aλ0(Q) such that for allλ 6 λ0(Q)

p(2)n (λn,Q) = eκ2n+o(n) (4.18)

provided thatQ is a Kesten pattern. (A Kesten pattern is a subwalk which can occur three
times in a self-avoiding walk.) We chooseQ to be the pattern in figure 3. By changing
it as shown toQ′ it contributes+1 to the torsion of the resulting polygon, and+3 to the
number of dihedral angles.

Figure 3. The patternQ can be changed into a non-planar patternQ′ which gives a contribution
of +1 to the torsion or+3 to the number of dihedral angles in a polygon.
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Take 0< ε < λ < λ0(Q). Then we can selectbεnc patternsQ from any bλnc to
create a polygon with absolute torsion 3bεnc. This gives a lower bound on the number of
polygons with absolute torsion 3bεnc, which we express as follows

p̃n(3bεnc) >
(bλnc
bεnc

)
p(2)n (λn,Q). (4.19)

Taking the logarithm of this, dividing byn and lettingn→∞ gives

ρ̃(3ε) > λ logλ− ε logε − (λ− ε) log(λ− ε)+ κ2 (4.20)

for any ε > 0. Note that the functionf (ε) = λ logλ− ε logε − (λ− ε) log(λ− ε) has an
infinite right derivative atε = 0, for any fixedλ > 0. Sinceρ̃(0) = κ2, and is continuous
at ε = 0, it follows thatρ̃(ε) has infinite right derivative atε = 0. �

We next state a similar theorem about the behaviour ofρ̃(ε) at ε = 1.

Theorem 4.3.ρ̃(ε) is continuous atε = 1 and the left derivative atε = 1 is equal to minus
infinity.

We omit the details of the proof but note that the idea is similar to the proof of theorem 4.2.�
We now examine the consequences of these theorems for the asymptotic behaviour of

the free energy. Defineεm = min{ε|ρ̃(ε) = κ3}. Thenεm exists by theorem 4.2. It follows
that

lim
n→∞

1

n
log p̃n(bεmnc) = κ3 (4.21)

and the number of polygonspn is dominated (exponentially) by polygons with a ‘density’
bεmnc
n

of dihedral angles. Figure 4 is a schematic diagram ofρ̃(ε). It is not clear whether
the maximum is attained at a single point, or in an interval. (If it is attained in an interval,
then there is a first-order phase transition between the high- and low-density phases).

The right derivative ofρ̃(ε) at ε = 0 is +∞, as shown in theorem 4.2. The Legendre
transform

F̃(β) = sup
ε

{ρ̃(ε)+ εβ} (4.22)

connects the density function to the free energy [21, 22]. By equation (4.20) we have

ρ̃(3ε) > log

(
λλ

εε(λ− ε)(λ−ε)
)
+ κ2 (4.23)

Figure 4. The density functionρ̃(ε).
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Figure 5. A schematic graph of the free energies.

where 0< ε < λ < λ0. But

3εβ + log

(
λλ

εε(λ− ε)(λ−ε)
)
= 3εβ + λ logλ− (λ− ε) log(λ− ε)− ε logε

> ε(3β + logλ− logε)− (λ− ε) log
(

1− ε
λ

)
> 0 if 3β + logλ > logε (4.24)

and, for everyβ, there is such anε. ThusF̃(β) > κ2 for all finite β. On the other hand,
F̃(β) is asymptotic toκ2 asβ → −∞. To see this, note that from equations (4.16) and
(4.22) for anyδ > 0, there is anm such that

F̃(β) 6 δ + κ2+ sup
ε

{ε(log 2+ (κ3− κ2)m+ β)}. (4.25)

If β is sufficiently negative at log 2+ (κ3 − κ2)m + β < 0, then the above supremum is
attained atε = 0, andF̃(β) is within δ of κ2. Theorem 4.3 implies that the free energy,
F̃(β), never reaches its asymptote asβ →∞. The free energies are sketched in figure 5.

5. Discussion

We have introduced three measures of the torsion of a self-avoiding polygon, which we
call the torsion, the excess torsionand theabsolute torsion. By attaching a fugacity (β)
we define appropriate generating functions, and limiting quantities which correspond to free
energies. We obtain rigorous results about the dependence of these free energies on their
corresponding torsion fugacities, and show that the free energy corresponding to the excess
torsion is non-analytic atβ = 0. The mean excess torsion increases as

√
n [23] for β = 0

but as the first power ofn for positiveβ.
The mean torsion is clearly zero atβ = 0 and we prove that it increases linearly with

n for positive β (and decreases linearly withn for negativeβ), while the mean absolute
torsion increases linearly withn for all β > −∞.

We expect that at large positiveβ the mean torsion and the excess torsion are both
dominated by polygons with helical structures, and that the mean absolute torsion is
dominated by highly non-planar structures. At large negativeβ the mean torsion is
dominated by helical structures (but of the opposite side), the mean excess torsion is
dominated by polygons in which the positive and negative contributions to the torsion
roughly cancel, and the mean absolute torsion is dominated by planar structures.
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